
J. Fluid Mech. (2006), vol. 560, pp. 415–436. c© 2006 Cambridge University Press

doi:10.1017/S0022112006000796 Printed in the United Kingdom

415

The encapsulation of particles and bubbles by an
advancing solidification front

By MIN S. PARK, ALEXANDER A. GOLOVIN
AND STEPHEN H. DAVIS

Department of Engineering Science and Applied Mathematics, Northwestern University,
Evanston, IL 60208, USA

(Received 16 May 2005 and in revised form 19 January 2006)

An insoluble particle, a solid sphere or a spherical bubble, submerged in a liquid
and approached by an advancing solidification front, may be captured by the front
or rejected. The particle behaviour is determined by an interplay among van der
Waals interactions, thermal conductivity differences between the particle and the
melt, solid–liquid interfacial energy, the density change caused by the liquid–solid
phase transition, and in the case of a bubble, the Marangoni effect at the liquid–gas
interface. We calculate the particle velocity and the deformation of the front when the
particle is close to the front, using the lubrication approximation, and investigate how
the particle speed, relative to the front, depends on the parameters that characterize
the described effects.

1. Introduction
The interaction between particles and solidification fronts is important for many

applications. It affects the quality of large crystals grown by directional solidification;
it is crucial for fabrication of composites reinforced by particles and determines
their effective bulk properties (Shangguan, Ahuje & Stefanescu 1992); it governs the
formation of ice lenses in frozen soils (Corte 1962); and last but not least, it is the key
process in the cryo-preservation of biological cells (Bronstein, Itkin & Ishkov 1981;
Körber 1988).

When a solidification front approaches a particle (solid particle, bubble, biological
cell, etc.) that is suspended in a melt near the front, it can either repel the particle,
pushing it in front of itself, or it can engulf the particle, trapping it within the growing
solid region. The outcome of this interaction depends on the speed of the solidification
front, the particle size and various physical characteristics of the particle–melt–crystal
system.

Corte (1962), motivated by geological applications, carried out the first experiments
on the interaction of an ice–water interface with different solid particles and reported
the first experimentally observed relation between the solidification speed and the
particle size. Uhlmann, Chalmers & Jackson (1964) suggested that the particle–front
interaction is determined by the particle material properties and its size, owing to the
change of chemical potential of the liquid between the particle and the solidification
front. They assumed that the particle engulfment occurs when the separation distance
becomes of the order of one molecular diameter.

Chernov, Temkin & Mel’nikova (1976) explained that the interaction between a
particle and a solidification front is governed by the van der Waals interactions that
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repel the particle from the interface; the particle speed is then determined by the
balance between the van der Waals and the viscous lubrication forces caused by the
flow of liquid around the particle. Under the assumption of a paraboloid frontal shape
near the particle Chernov et al. (1976) derived an approximate analytical expres-
sion for the particle speed as a function of its size, the temperature gradient and
the solid–liquid surface energy that affects the phase equilibrium conditions due to
the Gibbs–Thomson relation. Similar treatment of the problem was proposed by
Gilpin (1980) who, however, adopted the earlier approach by Uhlmann et al. (1964)
based on the change of the chemical potential. It is now generally accepted that the
interplay between the van der Waals and lubrication forces plays the key role in the
particle–front interaction. An asymptotic analysis of the frontal shape for the case
when a particle is very close to the front was performed by Hadji (1999, 2002) who
considered the effects of van der Waals and lubrication forces combined with the
Gibbs–Thomson effect. These analyses were generalized by Rempel & Worster (1999,
2001) who also took into account the shift of the phase equilibrium caused by the
disjoining pressure.

Another important factor that affects the particle behaviour near an advancing
solidification front is the difference of thermal conductivities of the particle, melt and
solid. Zubko, Lobanov & Nikonova (1973) experimentally examined the influence of
the thermal parameters on the capture of a particle using naphthalene and particles
of low-melting-point metals with different thermal conductivities. It was found that
the ratio of thermal conductivities of the particle and the melt was one of the main
factors that determined the behaviour of a particle near a growing crystal. Chernov,
Temkin & Mel’nikova (1977) were the first to explain this observation as due to the
distortion of the isotherms around a particle whose thermal conductivity differs from
that of the surrounding melt and the adjacent crystal. They showed that if the particle
heat conductivity is less than that of the solid and melt (assumed equal) this leads
to the formation of a bulge at the solid–liquid interface that repulses the particle. In
the opposite case, when the particle heat conductivity is larger than that of the melt
and solid, this leads to the formation of a depression at the front that promotes the
particle capture.

Sen et al. (1997), using X-ray transmission microscope, observed real-time evolution
of the shape of a solidification front moving towards particles with different thermal
conductivities. They found that thermal effects associated with thermal conductivity
differences affect the maximum speed of the particle near the front, resulting in
the engulfment of high-conductivity particles and rejection of low-conductivity ones.
The effects of thermal conductivities of a particle, melt and solid on the interaction
between a particle and a solidification front were reviewed by Azouni & Casses (1998).
A summary of various theoretical models and experimental correlations describing
the conditions for particle engulfment is given in Stefanescu et al. (1999) and Catalina,
Mukherjee & Stefanescu (2000). Numerical simulations of a free-boundary problem
describing the behaviour of a spherical solid particle near an advancing solidification
front were performed recently by Garvin & Udaykumar (2003a, b, 2004, 2005).

While the behaviour of solid particles near advancing solidification fronts has
received much attention, the interaction between solidification fronts and gas bubbles
has been much less studied. The main effect that distinguishes the behaviour of a
bubble near a solidification front from a solid particle is the thermorcapillary effect
caused by the dependence of the bubble surface tension on temperature. In the
presence of temperature gradient this effect results in the migration of a bubble in
the direction of the gradient that is caused by the flow produced by the gradient of
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the surface tension (Young, Goldstein & Block 1959). Bagdasarov, Okinshevich &
Kholov (1980) first included the thermocapillary effect in the force equilibrium and,
using the balance of a body force, lubrication force, and thermocapillary force,
calculated the critical speed of the solidification front at which the bubble capture
occurs. Geguzin & Dzyuba (1981) considered the temperature gradient on the bubble
surface and calculated the bubble velocity by using the balance of intermolecular force
and viscous resistance with thermocapillary effect. Dzyuba & Zu (1985) considered
the velocity of bubble thermocapillary motion near a solidification front and obtained
the dependence of the gap between the particle and the front on the bubble radius
and the surface tension gradient. An effect similar to thermocapillary but caused by
a concentration gradient can occur if a substance that changes the bubble surface
tension (surfactant) is present in the melt. This concentration–capillary effect was
investigated experimentally by Wang, Mukai & Lee (1999) who showed that the
gradient of surfactant concentration near a solidification front can cause bubble
motion towards the front and promote engulfment.

Another important effect that can have a large influence on the interaction between
a particle and a solidification front is the bulk flow caused by the density variation
upon solidification. Depending on whether the density of the solid is larger or smaller
than that of the melt, the flow can be towards or away from the front, directly affecting
the particle. The effect of the density-variation-driven flow on particle engulfment has
not yet been studied.

In the present study we generalize the analysis of the interaction between a particle
(solid particle or a gas bubble) and an advancing solidification front for the case when
all the effects described above are present. We investigate the relative importance of
various effects in the presence of others and draw a unified picture of engulfment.
The main goal of this paper is to derive conditions for a particle (a droplet or a
bubble) to be engulfed by an advancing solidification front or to be repelled by it.
These conditions are determined by the particle velocity relative to the planar parts
of the front far from the particle: the particle will be engulfed if, as a result of the
front–particle interaction, the particle moves towards the front. Here, we study this
problem by means of an asymptotic analysis in the lubrication approximation, valid
in the case when the separation distance between the front and the particle is much
less than the particle radius and when the variations of the frontal shape near the
particle are small. In this approximation, we compute the particle velocity resulting
from the balance of hydrodynamic, intermolecular and other forces acting between
the particle and the front. Comparing this velocity with that of planar parts of the
advancing solidification front far from the particle allows us to find the conditions
for particle engulfment.

2. Formulation of the model
In the present work the term particle will denote either a solid sphere or a spherical

bubble. Consider a particle of radius R suspended in a pure liquid while a solidifying
front approaches it at speed V . The frame of reference in which the solidification
front is moving with speed V will be referred to as the lab frame. We consider here the
situation typical of directional solidification in which the frontal speed is prescribed
by the pulling of the melt through an applied temperature gradient, positive in the
direction from the solid to the liquid. The particle is initially positioned with its centre
at a distance H from the melting-temperature isotherm at T = Tm (see figure 1). When
H − R is about 100 nm, van der Waals interactions become effective. If the van
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Figure 1. A spherical particle near a moving solidification front in a temperature gradient
G. The particle is separated from the solid–liquid interface by a film of melt of thickness d(θ ).

der Waals interactions are repulsive (and we consider only this case), they push
the particle away from the front and the disjoining pressure in the gap between
the particle and the front results in front deformation. Note that besides van der
Waals interactions other repulsive interactions can be important, e.g. electrostatic or
double-layer, see Israelachvili (1992). The particle speed is determined by the balance
between the disjoining pressure and the lubrication pressure. The latter depends on
the flow in the gap between the particle and the front as well as on the boundary
conditions on the particle surface (no-slip in the case of a solid particle and no-stress
or thermocapillary stress in the case of a bubble). The lubrication pressure is also
affected by the bulk flow produced by the density change upon solidification, as well
as by the shape of the front. The latter, in turn, depends on many factors, such as the
temperature field, the thermal conductivities of three different phases, crystal–melt
surface energy and the disjoining pressure in the gap between the particle and the
front.

In the presence of the disjoining pressure caused by the van der Waals interactions,
the solid–liquid equilibrium temperature Ti of a curved front is given by the Gibbs–
Thomson equation,

Ti = Tm

[
1 −

(
λ

d

)3

− σK
Lv

]
, (2.1)

where K is the front curvature, σ is the front interfacial energy, Lv is the latent heat
per unit volume of solid, d is the film thickness between the particle and the front
and λ is the disjoining pressure length scale (Wettlaufer et al. 1996) defined by

λ =

(
A

6πLv

)1/3

, (2.2)

where A is the Hamaker constant characterizing the van der Waals interactions
between the material of the particle and the solid separated by a planar liquid film
(Israelachvili 1992).

Here we make the following assumptions: the Péclet number Pe =UR/κT � 1 (U is
the particle speed and κT is the melt thermal diffusivity) so that the convective
heat transfer can be neglected (for typical values V ∼ 10−6 m s−1, R ∼ 10−6 m,
κT ∼ 10−7 m2 s−1, Pe ≈ 10−5); the thermal conductivities of the melt and the crystal are
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equal; latent heat is neglected in the heat balance; the applied temperature gradient
G is constant; the particle remains spherical (for a bubble with typical values
σ = 0.05 Jm−2, ρ = 103 kgm−3, U ∼ 10−6 m s−1, the Weber number We = σ/ρU 2R ∼ 5 ×
1013 � 1 and therefore the bubble deformation can be neglected†). Under these
assumptions, the interface temperature can be written as (Chernov et al. 1977)

Ti(θ, t) = T0 − G(R + d) cos θ

[
1 + ke

(
R

R + d

)3
]

− G

∫ t

0

[V − U (τ )] dτ, (2.3)

where T0 is the temperature at the centre of the particle (see figure 1), U (τ ) is the
particle velocity in the lab frame, and

ke =
km − kp

2km + kp

, (2.4)

where km and kp are heat conductivities of the melt and particle, respectively; thus
−1 � ke � 1/2.

It is convenient to choose the characteristic length scale (Rempel & Worster 1999)

l ≡ (λ3Tm/G)1/4 =

(
ATm

6πLvG

)1/4

, (2.5)

and combine equations (2.1) and (2.3) to obtain

Γ RK +
l4

d3
= (R + d) cos θ

[
1 + ke

(
R

R + d

)3]
− H, (2.6)

where

Γ =
Tmσ

LvGR
(2.7)

is the capillary length, and

H =
T0 − Tm

G
−

∫ t

0

[V − U (τ )] dτ. (2.8)

Note that here d = d(θ), d(0) = d0; see figure 1.
Since the film thickness above the deformed front is much less than R, the disjoining

pressure can be taken as

PT =
A

6πd3
=

Lvλ
3

d3
, (2.9)

where A is the Hamaker constant. The total van der Waals force on the particle is
calculated by integrating PT over the particle surface. For a spherical particle near
the front, the normal component of this force is given as

FT = 2πR2

∫ θc

0

PT sin θ cos θ dθ = πR2Lv

Gl4

Tm

∫ θc

0

sin(2θ)

d3(θ)
dθ. (2.10)

Because the film thickness increases rapidly with θ , the largest contributions to FT

come from the region near the base of the particle. If the integration limit θc is such
that the film thickness at θc is much greater than the film thickness d0 immediately

† The bubble can deform during its capture by the solid phase but this process is not described
by our model.
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beneath the particle, the value of the integral will only very weakly depend on θc.
Thus, for the numerical calculations that follow, we use θc → π/2.

When the particle moves, flow occurs in the thin film that separates the particle
from the front. Near the base of the particle a lubrication approximation can be used
to find the volume flux; the latter depends on whether the particle is a solid sphere
or a bubble. The equation of the lubrication approximation is given by

µ
∂2u

∂ȳ2
=

∂P

∂x̄
, (2.11)

where u is the tangential component of the flow velocity in the film, P is pressure,
µ is the dynamic viscosity of the liquid, and the coordinates x̄ and ȳ differ from
the coordinates x and y shown in figure 1 by the choice of the origin: here it is
at the solid–liquid interface, at the point corresponding to the minimal gap between
the particle and the front. Using the no-slip boundary condition at the solidification
front, and at the surface of a solid particle, the flow velocity in the film is obtained as

ū =
1

2µ

∂P

∂x̄
ȳ(ȳ − d). (2.12)

Integrating ū from 0 to d gives the volume flux

qp = −πd3(θ)

6µ
sin θ

dP

dθ
. (2.13)

Note that this is the volume flux of liquid out of the gap between the particle and the
front, so it is negative if the particle is moving away from the front and the liquid is
flowing into the gap.

In the case of a bubble, the thermal gradient generates thermocapillary stress at
the bubble–melt interface that is balanced by the shear stress,

µ
∂ū

∂ȳ
=

∂σ

∂x̄
=

∂σ

∂T

∂T

∂x̄
= −β

∂T

∂x̄
. (2.14)

In this case one obtains for the velocity

ū =
1

2µ

∂P

∂x̄

(
ȳ2 − 2dȳ

)
− β

µ

∂T

∂x̄
ȳ (2.15)

and for the volume flux

qb = −2πd3(θ)

3µ
sin θ

∂P

∂θ
+

πβ

µ
sin θ

∂T

∂θ
d2(θ), (2.16)

where β = −∂σ/∂T is typically positive.
Regardless of the density difference between the melt and the solid, mass conserva-

tion implies that the volume of liquid transported past the angular position θ in a time
dt is equal to the volume swept out beneath the particle as it travels the corresponding
distance dz. Liquid of density ρl becomes solid of density ρs upon solidification, e.g.
there is contraction in metals and expansion in water and semiconductors. Conserva-
tion of mass should additionally take into account the volume proportional to the rate
of volume contraction (or expansion) due to solidification which is equal the volume
swept in (or out) beneath the particle as the front travels the additional distance dζ

proportional to the change of volume. The balance of mass in the liquid film is given
by

qdt = −π(R sin θ)2dz + π[(R + d) sin θ]2 dζ, (2.17)
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where dζ = V (1 − ρs/ρl) dt . Combining this with equations (2.13) and (2.16) allows
the lubrication pressure to be written for the solid

Pp = 6µR2U

∫ θ

θc

sinφ

d3(φ)
dφ − 6µVρ ′

∫ θ

θc

[R + d(φ)]2 sinφ

d3(φ)
dφ, (2.18)

and the bubble

Pb =
3

2
µR2U

∫ θ

θc

sinφ

d3(φ)
dφ − 3

2
β

∫ θ

θc

∂T

∂φ

dφ

2d(φ)
− 3

2
µVρ ′

∫ θ

θc

[R + d(φ)]2 sinφ

d3(φ)
dφ,

(2.19)

where U ≡ dz/dt is the particle velocity, V is the speed of the solidification front, and
ρ ′ = 1 − ρs/ρl .

The normal component of the lubrication force is found by integrating the liquid
pressure over the particle surface; for the solid particle

Fµ,p = 6πµR4U

∫ θc

0

sin 2θ dθ

∫ θ

θc

sinφ

d3(φ)
dφ

− 6πµR2Vρ ′
∫ θc

0

sin 2θ dθ

∫ θ

θc

[R + d(φ)]2 sinφ

d3(φ)
dφ, (2.20)

and for the bubble

Fµ,b =
3

2
πµR4U

∫ θc

0

sin 2θ dθ

∫ θ

θc

sinφ

d3(φ)
dφ − 3

2
πR2β

∫ θc

0

sin 2θ dθ

∫ θ

θc

∂T

∂φ

dφ

d(φ)

− 3

2
πµR2Vρ ′

∫ θc

0

sin 2θ dθ

∫ θ

θc

[R + d(φ)]2 sinφ

d3(φ)
dφ. (2.21)

The front deformation is determined by the surface energy, disjoining pressure
and different thermal conductivities of the phases. The effect of different thermal
conductivities turns out to deform the front as much as 103 times more than the effect
of the surface energy. It is therefore convenient to scale the distances F and B shown
in figure 1 as f ≡ F/(εsR) and b = B/(εsR), where εs ≡ (l4/Γ R3)1/3 = (A/6πσR2)1/3.
The typical values of A ∼ 10−20 J, σ ∼ 10−2 Jm−2 and R ∼ 10−6 m give εs ∼ 10−2. Thus,
we assume εs � 1 for micron-size and larger particles. Since the frontal deformation
is significant in the region corresponding to a small angular distance from the particle
base we shall define the perturbation of the film thickness as

f =
1

εsR

(
d − H − R cos θ

cos θ

)
. (2.22)

The film thickness is of the order of εsR near the base of the particle and diverges
towards infinity as θ tends to π/2. F ≡ εsRf is the radial distance from the position of
the deformed solidification front to the solidification plane far away from the particle
as shown in figure 1 and f changes from zero at the particle base to O(1) value far
from it where the frontal shape is practically planar.

When the distance d between the particle and the front becomes small enough, the
van der Waals interactions become important. We take H ≡ R + εsRb where εs � 1
and b = O(1), define a new variable, s ≡ 1 − cos θ , 0 <s < 1, and rewrite (2.6) in terms
of f and s. One can divide the region between the particle and the front into two
parts: the inner region, where the right-hand side of equation (2.6) is balanced mainly
by the second term on the left-hand side describing the van der Waals interactions,
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and the outer region, in which the right-hand side of equation (2.6) is balanced mainly
by the first term on the left-hand side describing the Gibbs–Thomson relation. In the
inner region s = O(εs) while in the outer region s = O(1).

The boundary conditions consist of the symmetry condition at θ = 0 and the
requirement that the solidification front becomes planar far away from the particle
so that

dd(θ)

dθ
= 0 at θ = 0 and d → H − R cos θ

cos θ
as θ → π

2
. (2.23)

In the outer region where the van der Waals interactions are negligible equation (2.6)
can be reduced to

[(1 − s)4 − (1 − s)6]f ′′ − [3(1 − s)3 − 5(1 − s)5]f ′

+[(1 − s)2 − 3(1 − s)4]f =
f

γ
, γ ≡ Γ/R, (2.24)

where the prime denotes a derivative with respect to s. Equation (2.24) implies that
the frontal shape in the outer region is determined by the effect of the surface energy.
Also, it follows from (2.23) that f → 0 for s → 1.

In the inner region s =O(1) and the leading-order approximation for the front
deformation is given by

2(ξf ′)′ +
1

(ξ + b + f )3
− ke

γ
= 0. (2.25)

Here the prime denotes a derivative with respect to ξ ≡ s/εs . Equation (2.25) implies
that the frontal deformation in the inner region is determined by the combined effect
of van der Waals interactions, the surface energy and different heat conductivities.
The boundary condition at s =0 from equation (2.23) can be derived as

2f ′ +
1

(b + f )3
− ke

γ
= 0 at ξ = 0. (2.26)

In order to determine the shape of the interface we solve equations (2.24) and
(2.25) numerically. First, we choose an initial estimate f0 to satisfy the boundary
condition (2.26) that corresponds to dd/dθ = 0. Equation (2.25) is then integrated
by a Runge–Kutta method, from ξ = 0 to ξ = ξ2, where ξ2 is chosen between 1 and
1/εs . After that we use the values f (s1) = f (ξ2) and f ′(s1) = f ′(ξ2)/εs at that point as
initial conditions to integrate from s1 = εsξ2 to s2 < 1. The integration is terminated
if f starts to blow up. We then improve the initial guess f0 by means of a bisection
method. This allows us to choose the best approximation to the value of f0 (up to
10−7) for which the far-field boundary condition, f → 0 as s → 1, is satisfied.

3. Bubble velocity
We ignore buoyancy and set the sum of the lubrication, van der Waals and thermo-

capillary forces to zero. This gives the velocity of the bubble in the form

Ub = 4U1 + U2 + U3, (3.1)

where

U1 = − Lvλ
3

6µR2
I−1
0

∫ θc

0

d−3(θ) sin 2θ dθ, (3.2a)
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Parameters SiC in water Air bubble in water SiC in aluminum Air bubble in aluminum

Asw (J) 1.3 × 10−19 5.0 × 10−21 5.5 × 10−19 1.0 × 10−20

G (K m−1) 1.0 × 104 1.0 × 104 1.0 × 104 1.0 × 104

R (m) 1.0 × 10−6 1.0 × 10−6 1.0 × 10−6 1.0 × 10−6

ρl (kg m−3) 9.98 × 102 9.98 × 102 2.38 × 103 2.38 × 103

ρs (kgm−3) 9.17 × 102 9.17 × 102 2.7 × 103 2.7 × 103

Tm (K) 273.15 273.15 933 933
Lv (Jm−3) 3.03 × 108 3.03 × 108 1.08 × 109 1.08 × 109

σsl (Jm−2) 3.0 × 10−2 3.0 × 10−2 1.43 × 10−1 1.43 × 10−1

µ (Pa s) 1.8 × 10−3 1.8 × 10−3 4.0 × 10−3 4.0 × 10−3

km (Wm−1 K) 5.69 × 10−1 5.69 × 10−1 1.03 × 102 1.03 × 102

kp (Wm−1 K) 4.2 × 101 2.43 × 10−2 2.94 × 101 6.27 × 10−2

Vsl (m s−1) 5.00 × 10−7 5.00 × 10−7 3.00 × 10−7 3.00 × 10−7

β (PaK−1) − 1.0 × 10−5 − 1.0 × 10−5

λ (m) 2.83 × 10−10 9.57 × 10−11 3.00 × 10−10 7.89 × 10−11

γ 2.71 2.71 12.4 12.4
ke −0.96 0.47 0.31 0.50
M − 8.75 × 10−2 − 6.05 × 10−2

N 4.46 × 10−4 5.14 × 10−3 −3.3 × 10−4 −6.67 × 10−3

Table 1. Typical parameter values for use in predicting the behaviour of an insoluble particle
near an advancing solidification front. The tabulated values for the effective Hamaker constant
Asw are from Johansen & Taniguchi (1998) and Onoda (1985). G, R, and λ are referred to
Rempel & Worster (2001), β are referred to Young et al. (1959), and the other thermodynamic
properties are referred to Shackelford & Alexander (2000). Dependence of the thermal
properties of air and SiC on temperature is taken into account.

U2 =
β

µR2
I−1
0

∫ θc

0

sin 2θ dθ

∫ θ

θc

∂T

∂φ
d−1(φ) dφ, (3.2b)

U3 = ρ ′V I−1
0

∫ θc

0

sin 2θ dθ

∫ θ

θc

[1 + d(θ)/R]2 sinφ d−3(φ) dφ, (3.2c)

I0 =

∫ θc

0

sin 2θ dθ

∫ θ

θc

sinφ d−3(φ) dφ, (3.2d)

where the film thickness, d(θ), is determined from equation (2.6). It is convenient
to introduce the following dimensionless variables: h = H/R, δ = d/l, γ = Γ/R and
κ = RK. Using these, equation (2.6) can be written as

γ κ + εδ−3 = [1 + δε + ke(1 + δε)−2] cos θ − h, (3.3)

where ε = l/R; for a micron-size particle (see table 1), ε ≈ 10−2 � 1. To choose a
velocity scale we recall the definition for l and let

W =
Lvl

3G

6µTmR
=

1

6µR

(
LvG

Tm

)1/4(
A

6π

)3/4

, (3.4)

which is identical to that proposed by Chernov et al. (1976, 1977). Although, as shown
by Rempel & Worster (2001), another scaling is more appropriate when the effects
of the crystal–melt surface energy are important, we have chosen scale (3.4) in order
to make the analysis of relative roles of various effects more transparent. From equa-
tion (3.1) the dimensionless bubble velocity becomes

ub = 4u1(δ0, γ, ke) + Mu2(δ0, γ, ke) + Nu3(δ0, γ, ke), (3.5)
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where

u1 = −εj−1
0

∫ θc

0

sin 2θ

δ3(θ)
dθ, (3.6a)

u2 = j−1
0

∫ θc

0

sin 2θ dθ

∫ θ

θc

δ−1(φ) sinφ dφ, (3.6b)

u3 = j−1
0

∫ θc

0

sin 2θ dθ

∫ θ

θc

[1 + εδ(φ)]2

δ3(φ)
sin φ dφ, (3.6c)

j0 =

∫ θc

0

sin 2θ dθ

∫ θ

θc

δ−3(φ) sinφ dφ. (3.6d)

M =
6βTmR

Lvl2
, N =

6µTmR

Lvl3G

(ρl − ρs)

ρl

V . (3.6e)

The integrals (3.6a)–(3.6d) are evaluated using the function δ(θ) found from the
numerical solution of (3.3). They are functions of the dimensionless gap δ0 between
the front and the bubble corresponding to the minimum of the melt film thickness, the
surface-energy parameter, γ , and the thermal conductivity ratio parameter, ke. The
value of δ0 is determined mainly by the balance between interfacial-curvature effects
and van der Waals interactions. The dimensionless parameter M is the Marangoni
number characterizing the thermocapillary effect, and the dimensionless parameter N

characterizes the additional flow caused by the density change upon crystallization.
Usually, for a micron-size particle, 10−4 < N < 10−2, so N � 1 (see table 1) and since
ε � 1, one can just set u3 ≡ 1. Note that for γ = 0 (negligible effects of the surface
energy), the functions u1(δ0, 0, ke) and u2(δ0, 0, ke) can be computed analytically.
The corresponding formulae are given in the Appendix. Note also that for γ → 0
equations (2.24)–(2.26) become singularly perturbed and their solution develops a
boundary layer. However, the rescaled frontal shape F tends to a specific limiting
shape in this case (see also Rempel & Worster 2001).

4. Solid-particle velocity
The analysis described above for a spherical bubble is easily applied to the case of a

solid spherical particle. We neglect the buoyancy and set the sum of the intermolecular
force and the lubrication force to zero, thus obtaining the following velocity for the
solid particle:

Up = U1 + U3, (4.1)

where U1 and U3 are given by equations (3.2a) and (3.2c), respectively, and the
film thickness can be determined from equation (2.6). Introducing dimensionless
parameters as described in § 3.1, one obtains the dimensionless particle velocity,

up = u1(δ0, γ, ke) + Nu3(δ0, γ, ke), (4.2)

where u1 and u3 are given by equations (3.6a) and (3.6c), respectively; as for the case
of a bubble, one can set u3 ≡ 1.

5. Results and discussion
The velocity up of a solid particle interacting with an advancing solidification front

depends on δ0, which is determined by the balance between the van der Waals and
lubrication forces, by γ that characterizes the effect of the surface energy of the
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Figure 2. Dimensionless particle velocity up as a function of the dimensionless film thickness
δ0 for various values of the surface energy parameter γ and various values of the particle-
to-melt thermal conductivity ratio: (a) kp/km = 0.1; (b) kp/km = 1.0; (c) kp/km = 10.0.

crystal–melt interface, by ke that describes the contrast of the particle and melt
thermal conductivities, and by N that characterizes the flow caused by the density
change upon solidification.

Plots of the function up(δ0) for various values of γ and kp/km are shown in figure 2
and figure 3 for the case when N = 0. One can see that the particle speed is small
for both small and large δ0 and reaches a maximum value at some intermediate
value of δ0. Indeed, with the decrease of δ0 the lubrication drag force increases faster
than the van der Waals repulsion, thus slowing the particle. For large δ0 the van der
Waals repulsion decreases rapidly which also leads to the decrease of up . Recalling
the definition of the velocity scale W in equation (3.4), we expect that the maximum
particle speed is proportional to λ9/4G1/4R−1. As described by Rempel & Worster
(1999), larger particles placed in smaller temperature gradients are pushed away from
the front more easily.

The effect of the crystal–melt surface energy on the particle velocity depends on
the ratio of thermal conductivities. One can see from figure 2 that this effect is
most pronounced when the two conductivities are equal. The effect of the surface
energy is small for both kp/km � 1 and for kp/km � 1. This is because in this case
the shape of the interface is determined mainly by the distortion of the thermal field
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Figure 3. Dimensionless particle velocity up as a function of the dimensionless film thickness
δ0 for different values of the particle-to-melt heat conductivity ratio kp/km and various values
of the surface-energy parameter: (a) γ =0; (b) γ = 10.0; (c) γ =100.0.

around the particle near the solidification front (see below). One can see also that
the increase of γ always leads to the decrease of the particle speed. The decrease of
the maximal particle speed means that the particle will be engulfed by the front at
lower solidification speeds. Therefore, one can conclude that the crystal–melt surface
energy (Gibbs–Thomson effect) promotes particle engulfment.

From figure 3 one can see that the particle speed considerably decreases with the
increase of kp/km. This effect results from the distortion of the solidification front
shape caused by the difference of the heat conductivities of the particle and the melt
(see figure 4). For kp/km < 1, the solidification front develops a bulge towards the
particle so that the thickness of the liquid film between the particle and the front
increases much more rapidly away from the particle base than in the case when the
front is planar. This leads to the fast decay of the lubrication force that counteracts
the particle repulsion by the van der Waals forces and to the larger speed of the
particle away from the front. On the contrary, for kp/km > 1, the temperature field
leads to the distortion of the solidification front in such a way that a depression is
formed near the particle (see figure 4). This is consistent with previous analyses by
Chernov et al. (1977), Azouni & Casses (1998), and Garvin & Udaykumar (2003a, b,
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Figure 4. The shape of the solidification front near the base of the particle for several values
kp/km with (a) γ = 0.01 and kp/km > 1; (b) γ = 0.01 and kp/km < 1; (c) γ = 1.0 and kp/km � 1.
The coordinates are the same as in figure 1. Thick lines in (a) and (b) show the particle surface,
and F corresponds to the front. Panels (a) and (b) correspond to computations for δ0 = 1 (fixed
distance between the particle and the front), while (c) corresponds to b = 0 (fixed position of
the particle with respect to the undeformed front).

2004, 2005). In this case the thickness of the liquid film dividing the particle from
the solid increases much more slowly away from the particle base than in the case of
the planar front. This makes the lubrication forces decay much more slowly, and the
total lubrication force that acts against the particle repulsion due to intermolecular
forces increases considerably, thus yielding a smaller particle velocity away from the
front. Therefore, one can conclude that for kp > km particle engulfment is promoted
(i.e. occurs at smaller speed of the solidification front). At the same time, we note
that particle repulsion is still possible if the speed of the solidification front is small
enough (less than the maximum particle speed), see below.

Figure 4 shows the shape of the solid–liquid interface near the base of the particle
for two different values γ and several values of kp/km. The horizontal coordinate
is the distance from the base of the particle, scaled by

√
εsR, while the vertical

coordinate is the distance from the undeformed planar solidification front (far away
from the base of the particle), scaled by εsR (see also figure 1). The shape of the front
does not depend on whether the particle is a solid sphere or a bubble since the front
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Figure 5. A diagram in the (kp/km, γ )-plane showing the different types of solidification
front shape with a particle near it.

deformation is determined by the effect of the disjoining pressure, surface energy, and
conductivity difference described by (2.24) and (2.25). Figures 4(a) and 4(b) agree with
the previous works by Shangguan et al. (1992) and Garvin & Udaykumar (2003a, b).

It is interesting to note the competing effects of large surface energy that tends
to flatten the solid–liquid interface, and small particle-to-melt thermal conductivity
ratio that tends to advance the interface towards the particle. This competition results
in the interface shape shown in figure 4(c). The effect of γ is dominant near the
base of the particle while the effect of kp/km is dominant away from the particle for
certain values of γ and kp/km. We can hence distinguish three types of the interface
shape: convex, concave, and concave–convex. Figure 5 shows the regions in the (γ vs.
kp/km) parameter plane in which three different types of interface shape are observed.
When kp/km > 1 the shape of the interface is always concave, which promotes particle
engulfment. For kp/km < 1 three regions exist, corresponding to a convex, concave–
convex or concave interface. When γ is small, the domain corresponding to the
concave–convex interface is confined to a narrow region close to kp/km =1, as was
suggested by Sen et al. (1997). As γ increases this region becomes wider.

Finally, we note that crystallization-induced density change, described by the dimen-
sionless parameter N in (3.6e), is simply reduced to the corresponding shift of the
function up(δ0) up or down, depending on expansion (ρs <ρm) or shrinkage (ρs >ρm)
of the solid phase with respect to the melt. For ρl >ρs (N > 0) the density change
produces flow away from the front that pushes the particle away so that its speed
becomes larger than that without density change. Obviously, the speed is finite even
for zero separation distance between the particle and the front. In the opposite case,
when ρl < ρs (N < 0), the flow produced by the density change is towards the front
and pulls the particle in the same direction, thus decreasing its velocity away from the
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Figure 6. Dimensionless bubble velocity ub as a function of the dimensionless film thickness
δ0 for various values of the Marangoni number M characterizing the thermocapillary effect,
and for (a) kp/km = 0; (b) kp/km = 0.1. The surface energy parameter γ = 10. The dotted lines
show the corresponding dependence for a particle with kp/km = 1.0 and γ = 0 in the absence
of the Marangoni effect.

front. For small separation distances δ0, this effect is dominant so that, if ρl <ρs , the
particle velocity is always negative, i.e. the particle moves towards the front (in the
lab frame).

The velocity of a bubble depends on the parameters γ , ke, N as well as on the
parameter M characterizing the thermocapillary effect. For N = M = 0 equation (3.5)
gives ub = 4εu1(δ0, γ, ke) = 4up . That is, in the absence of the thermocapillary effect
and the bulk flow produced by density change upon solidification, the bubble speed
is always four times larger than that of a solid particle for the same parameter
values, due to the stress-free boundary condition at the bubble–liquid interface. All
conclusions regarding the dependence of the particle velocity on the particle–front
separation distance, surface energy parameter and conductivity ratio discussed above
for the case of a solid particle remain the same for the case of a bubble, and the front
deformation caused by a bubble is the same as that caused by a solid particle (of
course, in the case of a bubble, kp/km � 1). Since the bubble-to-melt heat conductivity
ratio is always small, the frontal deformation near the bubble will always lead to
a bulge that will enhance the bubble repulsion due to decreased lubrication forces.
Thus, for M = N =0 the engulfment of a bubble will be suppressed in comparison
with the engulfment of a solid particle.

In the presence of the thermocapillary effect (M > 0) the bubble speed becomes even
larger than 4up . The imposed temperature gradient generates a gradient of surface ten-
sion at the bubble–liquid interface that leads to thermocapillary flow around the
bubble and bubble migration in the direction of the temperature gradient. The bubble
speed away from the front will therefore become larger than in the absence of
the thermocapillary effect. Figure 6 shows the dimensionless bubble velocity ub as
a function of the dimensionless film thickness δ0 for various values of M and two
values of kp/km (for comparison, the dotted lines show the speed of a solid particle
with kp/km = 1 and γ = 0). One can see that for M > 0 the bubble speed is always
larger than for M = 0. For small δ0 the speed change due to the thermocapillary effect is
negligible since the lubrication and van der Waals forces dominate. However, for larger
δ0 the thermocapillary effect becomes more pronounced since the thermocapillary



430 M. S. Park, A. A. Golovin and S. H. Davis

up

δ0 δ0

(a) (b)

1 2 3 4 5
10–4

10–2

10–1

10–3

100

101

102

1 2 3 4 5
10–3

10–2

10–1

100

101

102

103

105

104

ub

SiC in water (297 K)
SiC in aluminum (933 K)

Bubble in water

Bubble in aluminum

Figure 7. Dimensionless velocity u as a function of the dimensionless film thickness for some
real systems for (a) a particle, (b) a bubble . The physical data are based on table 1. The
dotted lines in (a) and (b) correspond to a solid particle with γ = 0, kp/km = 1 and a bubble
with γ = 0, kp/km = 0, respectively.

migration becomes the predominant mechanism of bubble motion. For small M the
dependence ub(δ0) is qualitatively the same as in the absence of the thermocapillary
effect, and the bubble speed is maximal at some intermediate separation distance. With
the increase of M , ub(δ0) becomes a monotonically increasing function: thermocapil-
lary migration of the bubble becomes the predominant mechanism of bubble motion
even at intermediate separation distances. One can conclude therefore that the thermo-
capillary effect suppresses bubble engulfment by an advancing solidification front.
Note that when the separation distance between the bubble and the solid–liquid inter-
face becomes large enough the lubrication approximation fails; far from the solidifica-
tion front the bubble speed tends to a constant value corresponding to thermocapillary
migration (Young et al. 1959). Also note that in the presence of Marangoni effect,
the bubble speed at separation distances δ0 > 1 is quite sensitive to the ratio kp/km.

Figure 7 shows examples of up(δ0) for a solid particle (figure 7a) and ub(δ0) for
a gas bubble (figure 7b) for sets of physical parameters corresponding to some real
physical systems. The system parameters are summarized in table 1. For comparison,
the dotted line in figure 7(a) corresponds to up(δ0) computed by Rempel & Worster
(1999) that takes into account the effect of van der Waals repulsion balanced by
the lubrication force while other effects, such as the surface energy, the bulk flow
produced by the density change, and the heat conductivity difference, are neglected.
One can see that such an approximation can lead to orders of magnitude difference
in particle speed. Similarly, in figure 7(b), the dotted line shows ub(δ0) for a bubble
with γ = 0 and kp/km = 0. One can see that while for small separation distances such
an approximation would work fairly well, for larger separation distances it gives an
orders of magnitude over-estimation of the bubble speed.

6. Conclusions
We have analytically investigated the behaviour of a solid particle and a gas bubble

near an advancing solidification front by means of asymptotic analysis using the
lubrication approximation. We have considered a general formulation of the problem
in which the most important physical effects that influence the particle speed near the
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solidification front are present together: van der Waals repulsion forces, lubrication
forces, crystal–melt surface energy, heat conductivity difference, density change upon
phase transition, as well as the thermocapillary effect in the case of a bubble. We have
computed the dimensionless particle speed as a function of the dimensionless gap
between the particle and the front, as well as of several dimensionless parameters that
characterize the described effects. In most cases the particle speed has a maximum at
a certain separation distance and tends to zero at both zero and infinite separation
distances. However, in the case of a bubble with the thermocapillary effect, the
maximum can disappear and the dependence can become monotonically increasing,
although tending to an asymptotic value corresponding to stationary thermocapillary
migration of the bubble. Also, the speed of the particle (in the lab frame) can be
non-zero at zero separation distance if the flow caused by the density change upon
solidification is present.

These results allow one to predict the conditions for particle engulfment by the
front which are schematically shown in figure 8. Here, the horizontal line corresponds
to the speed of the solidification front, V . For a typical dependence with a maximum,
if V < umax, there are two steady-state positions of a particle near the front: stable, δs ,
and unstable, δu (see figure 8a). If the initial position δu < δ0 <δs , then u>V and the
particle will move away from the front, approaching the steady-state separation dis-
tance, δs . With this distance unchanged, it will be further pushed in the melt in front of
the advancing solid–liquid interface. If δ0 >δs the front, moving faster than the particle,
will catch up with it, with the separation distance between them approaching δs; at this
stage the front will continue to push the particle in front of it. If δ0 <δu, then u < V and
the front will reach the particle in a finite time and engulf it. If the front is moving so
fast that V >umax, no steady-state separation distance exists and, regardless of the ini-
tial separation distance, the particle will be engulfed by the front. Regions in the (u, δ0)-
plane corresponding to particle repulsion and engulfment are shown in the figure.

If the bulk flow away from the front, produced by the density decrease upon solidi-
fication, is present, the typical engulfment diagram is as shown in figure 8(b). It is
similar to the one shown in figure 8(a), except that in this case a particle can be
captured by the solidification front only if the solidification speed is larger than the
minimal one corresponding to the lower horizontal line in figure 8(b).

In the case of a bubble with the thermocapillary effect, the dependence umax(δ0)
qualitatively changes with the increase of the Marangoni number and can have the
forms shown in figures 8(c, d). The dashed line qualitatively shows the limit when the
lubrication approximation fails and the bubble speed tends to the thermocapillary
migration speed, UT M , computed by Young et al. (1959). If the dependence umax(δ0)
is as shown in figure 8(c), then, in a certain interval of the solidification front speed,
umax < V < umin, there can be three steady states (one stable and two unstable). Outside
this interval there is only one, unstable steady state for V < umin and umax <V <UTM,
and no steady states for V > UTM. Thus, for example, if the front speed is in the
interval with three steady states (see figure 8b) and the initial separation distance
between the bubble and the front δ0 <δu1 the front will catch up with the bubble
and engulf it in a finite time. If δu1 < δ0 <δu2 then, depending on the initial position,
the bubble will approach the steady-state separation distance δs by either moving
away from the front (for δu1 < δ0 <δs) or towards the front (for δs < δ0 <δu2) and will
be further pushed by the moving front at this distance. If δ0 >δu2 the bubble will
always move away from the front since the thermocapillary migration speed will be
larger than the speed of the solid–liquid interface. If the frontal speed V < umin or
umax < V < UTM there is only one, unstable steady state, δu, such that if δ0 <δu the
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Figure 8. Schematic representation of engulfment conditions based on the dependence of a
particle or bubble dimensionless speed on the dimensionless separation distance from the front,
u(δ0): (a) typical dependence with one maximum (δu – unstable steady state, δs – stable steady
state); (b) for a solid particle in the presence of the bulk flow caused by the density change
upon solidification; (c) for a bubble with thermocapillary effect with two extrema (dashed
line corresponds to an asymptotic value of thermocapillary migration speed which is beyond
the validity of the lubrication approximation); (d) monotonic dependence for a bubble with
thermocapillary effect for large Marangoni numbers.

bubble will be engulfed by the front, and if δ0 >δu the bubble will escape from the
front, always moving away from it. If V > UTM, no steady state exists and, regardless
of the initial separation distance, the bubble will be engulfed by the solidification
front that is moving faster than the maximum possible bubble speed, UTM. With
further increase of the Marangoni number the dependence of the bubble speed on
the separation distance becomes monotonically increasing, as shown in figure 8(d). In
this case, for V < UTM there is only one, unstable steady state, δu, such that if δ0 <δu,
the front catches up with the bubble in a finite time and engulfs it, and if δ0 >δu, the
bubble, driven by the thermocapillary effect, moves along the temperature gradient
away from the front and can never be captured by the solid phase. However, for
V >UTM there is no steady state since the frontal speed is larger than the maximum
possible speed of the bubble so that the bubble will be engulfed by the solid phase
regardless of its initial position.
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We have examined the relative role of various effects in the interaction between a
particle and an advancing solidification front. We have shown that the surface energy
of the solid–liquid interface promotes particle engulfment in that the critical solidific-
ation speed at which the front captures the particle decreases with the increase of the
surface energy. The flow produced by the density change upon solidification can affect
the interaction in both ways: it promotes engulfment when the solid is more dense than
the melt, and it facilitates capture when the solid is less dense. However, the strongest
effect is made by the difference of heat conductivities between the particle and the melt.
In the case of a small particle-to-melt conductivity ratio the particle is more easily
repulsed by the front. If the ratio is large, the particle is easily engulfed by the front.

We have estimated the speed of a particle near a solidification front for some real
liquid–solid–gas systems. We have found that incorporation of all the described effects
can change the particle speed by almost one order of magnitude in comparison with
that computed by Rampel & Worster (1999, 2001) who took into account only the
effects of the surface energy, van der Waals interactions and lubrication pressure.

We have also computed the shape of the solidification front. We have shown that
the two most important parameters affecting its shape are the solid–liquid surface
energy and the particle-to-melt heat conductivity ratio. We have found regions in the
surface energy–conductivity ratio parameter plane that correspond to qualitatively
different shapes of the solidification front near the particle: concave, convex, and
concave–convex (see figure 5).

The obtained dependences of the particle speed on the separation distance from
the solidification front and various physical parameters allow us to find regions in
the parameter space where a particle will be engulfed by an advancing solidification
front regardless of its initial position. As described above, for this to happen the
solidification front speed must be larger than the maximum possible speed of the
particle corresponding to umax, or UT M in the case of a bubble in the presence of the
thermocapillary effect for some parameter values. Examples of such regions in different
parameter planes are shown in figure 9. The solid line in figure 9(a) corresponds to
the level set of the function umax(γ, kp/km) = umax(0, 1) = const (for N = 0), where
umax(γ, kp/km) is the maximum of the function up(δ0, γ, kp/km) defined by (4.2) (see
also figures 2 and 3). One can see from figure 9(a) that if the dimensionless speed of
the solidification front equals to some constant value (umax(0, 1) in the case shown in
figure 9a) then, depending on the dimensionless surface energy γ or the conductivity
ratio kp/km, a particle will be either always engulfed by the front or repelled by
it if the initial separation distance is larger than the threshold value (see figure 8).
Obviously, the solid line in figure 9(a) passes through the point γ =0, kp/km =1
corresponding to the reference values of umax chosen for this figure.

The critical engulfment condition V = umax(γ, kp/km) is equivalent to the following
relation for the dimensional parameters:

V ∗ =
1

6µR

[
LvA

3G

(6π)3Tm

]1/4

umax(γ, kp/km), (6.1)

where V ∗ is the dimensional speed of the solidification front, and

γ =
Tmσ

LvGR2
. (6.2)

Relations (6.1)–(6.2) allow one to determine regions in the planes of physical
parameters in which a particle or a bubble will always be engulfed by an advancing
solidification front. Examples of such regions for an SiC particle in water are shown
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Figure 9. Regions in parameter planes corresponding to engulfment or repulsion of a solid
particle by a moving solidification front. (a) Regions in the (γ, kp/km)-parameter plane cor-
responding to engulfment of a solid particle (white) and its repulsion or engulfment, depending
on the initial position (shaded); repulsion occurs for sufficiently large separation distance δ0.
(b) Conditions for engulfment of an SiC solid particle with radius R in water by a freezing
front moving with speed V ∗; other physical parameters are given in table 1. (c) Conditions for
engulfment of a solid SiC particle with radius R in water by a freezing front moving with a
constant speed shown in table 1 and thermal gradient G; other physical parameters are given
in table 1.

in figure 9(b, c). Figure 9(b) shows conditions for engulfment of a particle with radius
R by a front moving with speed V ; the thermal gradient as well as other physical
parameters are given in table 1. The white region corresponds to particle engulfment
regardless of its initial position. The shaded region corresponds to particle repulsion
or engulfment, depending on the initial separation distance between the particle and
the front (see above). For a particle with radius R there is a critical solidification
front speed above which this particle will always be captured by the moving front.
One can see that in the particular case shown in figure 9(b) the critical solidification
speed reaches a maximum value of about 0.01 µms−1 for a particle with the radius of
about 1 µm, so that if the speed of the solidification front is larger than this critical
value, a particle of any size will be captured by it. Such a small value of the critical
engulfment solidification speed is due to a very large particle-to-melt heat conductivity
ratio in the SiC–water system. Figure 9(c) shows critical values of the applied thermal
gradient below which a particle with the radius R will be engulfed regardless of its
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initial position with respect to the front. The figure corresponds to an SiC particle in
water when the freezing front is moving with the speed V ∗ = 1.25 × 10−8 m s−1. One
can see that in this case the critical thermal gradient has a minimum value about
100 K cm−1 when the particle radius is about 1 µm. If the applied thermal gradient
is below the minimal then a particle will always be captured by the solid phase. If
the thermal gradient is above the minimal value then a particle whose radius is in a
certain interval will be repelled by the front (provided it is initially far enough from
it) but both smaller and larger particles will be engulfed by the front.

Finally we note that in the diagrams shown in figure 9 the bulk flow produced by
the density change upon solidification is not taken into account. It can be shown,
however, that in the particular systems presented in figure 9 this effect changes
the critical parameter values by no more than a few percent. Also, for water and
aluminium, thermal conductivities of the liquid and crystalline phases differ by at
least a factor of two. Although the theory presented in this paper is valid for the case
when the thermal conductivities of the crystal and melt are equal, their difference
should not qualitatively change the main conclusions of our analysis.

We are grateful to Dr Brian Tsai for his early work on this problem. We are
also very grateful to anonymous referees of our paper for numerous very helpful
suggestions that led to significant improvement of this paper.

Appendix
For the case when γ = 0 the integrals (3.6a)–(3.6d) can be evaluated analytically by

introducing a new variable, δ(θ), instead of θ , and computing dδ/dθ by using implicit
differentiation of (3.3). As a result one obtains the following analytical expressions
for the functions u1(δ0, 0, ke) and u2(δ0, 0, ke):

u1(δ0, 0, ke) =

(
A1

2δ2
0

+
A2

2δ6
0

)(
B1

2δ0

+
2B2

5δ5
0

+
B3

6δ9
0

)−1

,

u2(δ0, 0, ke) = A3

(
B1

2δ0

+
2B2

5δ5
0

+
B3

6δ9
0

)−1

,

where

A1 =
1 − 2ke

(ke + 1)3
, A2 =

1

(ke + 1)2
, A3 =

4k3
e + 26k2

e + 4ke + 15

36(ke + 1)4
,

B1 =
(2ke − 1)2

(ke + 1)5
, B2 =

1 − 2ke

(ke + 1)4
, B3 =

1

(ke + 1)3
.
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